Multiresolution models for nonstationary spatial covariance functions
نویسندگان
چکیده
منابع مشابه
Multiresolution models for nonstationary spatial covariance functions
Many geophysical and environmental problems depend on estimating a spatial process that has nonstationary structure. A nonstationary model is proposed based on the spatial field being a linear combination of a multiresolution (wavelet) basis functions and random coefficients. The key is to allow for a limited some number of correlations among coefficients and also to use a wavelet basis that is...
متن کاملSpatial Modelling Using a New Class of Nonstationary Covariance Functions.
We introduce a new class of nonstationary covariance functions for spatial modelling. Nonstationary covariance functions allow the model to adapt to spatial surfaces whose variability changes with location. The class includes a nonstationary version of the Matérn stationary covariance, in which the differentiability of the spatial surface is controlled by a parameter, freeing one from fixing th...
متن کاملA class of nonseparable and nonstationary spatial temporal covariance functions.
Spectral methods are powerful tools to study and model the dependency structure of spatial temporal processes. However, standard spectral approaches as well as geostatistical methods assume separability and stationarity of the covariance function; these can be very unrealistic assumptions in many settings. In this work, we introduce a general and flexible parametric class of spatial temporal co...
متن کاملNonstationary Multivariate Spatial Covariance Modeling
We derive a class of matrix valued covariance functions where the direct and crosscovariance functions are Matérn. The parameters of the Matérn class are allowed to vary with location, yielding local variances, local ranges, local geometric anisotropies and local smoothnesses. We discuss inclusion of a nonconstant cross-correlation coefficient and a valid approximation. Estimation utilizes kern...
متن کاملNonstationary Covariance Functions for Gaussian Process Regression
We introduce a class of nonstationary covariance functions for Gaussian process (GP) regression. Nonstationary covariance functions allow the model to adapt to functions whose smoothness varies with the inputs. The class includes a nonstationary version of the Matérn stationary covariance, in which the differentiability of the regression function is controlled by a parameter, freeing one from f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistical Modelling
سال: 2002
ISSN: 1471-082X,1477-0342
DOI: 10.1191/1471082x02st037oa